genetics
Introduction
Sections in this article:
- Introduction
- Evolutionary Mechanisms
- Modifications of Mendel's Principles
- Basic Laws and Terminology
- Bibliography
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
Evolutionary Mechanisms
The study of mutations, together with the analyses of population genetics, has been used to explain the mechanism of evolution. The elementary process of evolution is considered to be the changes in the frequency of occurrence of alleles in a population. Mutation, which causes the appearance of new alleles or changes the relative frequency of already existing alleles, is one important mechanism by which evolution occurs. Natural selection (see selection), by affecting reproductive success, influences the frequencies of alleles and other genetic variants in successive generations. For example, if the presence of a particular allele makes a homozygous individual unable to mate, the allele may be eliminated from the population.
Sections in this article:
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
Modifications of Mendel's Principles
Modification of Mendel's principles developed as knowledge of the chromosomes increased; many discoveries have helped to account for apparent deviations from Mendelian ratios. For example, Mendel's studies emphasized genes that behave independently from one another during transmission to offspring. But we now know that genes are transmitted as constituents of chromosomes, each of which carries many different genes, which sheds light on the tendency of certain characteristics to appear in combination with one another (linkage). It also has been found that some characteristics are sex-linked, i.e., are transmitted by genes carried by the sex chromosomes (see sex); and that a non-sex-linked gene inherited from the father may differ in its expression from the same gene inherited from the mother, a phenomenon called “imprinting.” Other research has shown that there may be multiple alleles (more than two alternative genes) for a given characteristic: the human blood groups are determined by a combination of several possible alleles. It is apparent that homologous portions of paired chromosomes may be interchanged during meiosis (crossing over) and that the interaction of many genes is responsible for determining many of the traits of individuals. Since the discovery (1953) of the structure of DNA, work on nucleic acids has begun to explain how genes determine life processes by directing the synthesis of proteins. It has also explained mutations as alterations in gene or chromosome structure. It has been found, for example, that mutations in the form of repeated sequences of otherwise normal chemical bases, can grow in length with succeeding generations, in some cases causing diseases (e.g., myotonic muscular dystrophy) that increase in severity each time they are inherited.
Most of the knowledge of chromosome structure and the behavior of genes has come from studies of the vinegar, or fruit, fly (
Sections in this article:
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
Basic Laws and Terminology
The gene is defined as the unit of inheritance. A gene is actually a sequence of DNA (see nucleic acid) contained by and arranged linearly along a chromosome. Each gene transmits chemical information that is expressed as a trait, e.g., tall or dwarf size in the garden pea plant. Each species has a
In the process of meiosis, by which ova and sperm are produced, the chromosomes are so divided that each mature sex cell contains half the original number of chromosomes, or one chromosome of each pair, and therefore one gene of each pair. Thus, when the ovum and the sperm fuse on fertilization, the fertilized egg (zygote) receives one allele from each parent. With many pairs of alleles that have contrasting effects (e.g., certain alleles produce different eye color), one is dominant and the other recessive: an individual heterozygous (carrying contrasting alleles) for a given characteristic invariably displays one aspect of that characteristic and not its alternative, although the gene for the aspect that does not appear (i.e., that is recessive) is present. This individual is called a hybrid.
In Mendelian law (see Mendel) the offspring—or first filial (called F1) generation—of parents each homozygous for different alleles of a given gene are all hybrids heterozygous for the characteristic governed by that gene and are said to be of the same
It has also become clear that an individual organism's heredity and environment interact in the manifestation of many traits: a pea plant with a genetic tendency toward tallness will not achieve its full size if deprived of adequate water and minerals for growth. However, true alterations in gene and chromosome structure are the product of mutation and are not produced by environmental conditions, as was postulated by the theory of acquired characteristics. The discovery by H. J. Muller in 1927 of methods for artificially inducing mutations by means of ionizing radiations and other mutagens opened the way for much new genetics research.
Sections in this article:
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
Bibliography
See T. Beebe and J. Burke,
Sections in this article:
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Genetics and Genetic Engineering
