brake

Braking Systems

A manually operated brake pedal or handle is used to activate a brake. With low-power machinery or vehicles the operator can usually apply sufficient force through a simple mechanical linkage from the pedal or handle to the stationary part of the brake. In many cases, however, this force must be multiplied by using an elaborate braking system. In many modern braking systems there no longer is a direct connection between the pedal and the brake; a sensor is used register the force applied to the pedal, and that information is used to determine the pressure to apply to the brake. Automobile braking systems may also include an override that disables the accelerator when the brake is activated. An antilock braking system (ABS) uses sensors to identify when a wheel is locking and then applies and releases the brake automatically several times per second to prevent lockup. ABS can prevent skids, permitting controlled stops, and decreases the amount of time and distance needed to stop a car.

The Air Brake System

An early system for multiplying the braking force, called the air brake system, or air brake, was invented by American manufacturer George Westinghouse and was first used on passenger trains in 1868. It is now widely used on railroad trains. The fundamental principle involved is the use of compressed air acting through a piston in a cylinder to set block brakes on the wheels. The action is simultaneous on the wheels of all the cars in the train. The compressed air is carried through a strong hose from car to car with couplings between cars; its release to all the separate block brake units, at the same time, is controlled by the engineer. An automatic feature provides for the setting of all the block brakes in the event of damage to the brake hose, leakage, or damage to individual brake units. The air brake is used also on subway trains, trolley cars, buses, and trucks.

The Hydraulic Brake System

The hydraulic brake system, or hydraulic brake, is used on almost all automobiles (see hydraulic machine). When the brake pedal of an automobile is depressed, a force is applied to a piston in a master cylinder. The piston forces hydraulic fluid through metal tubing into a cylinder in each wheel where the fluid's pressure moves two pistons that press the brake shoes against the drum.

The Vacuum Brake System

The vacuum brake system, or vacuum brake, depends upon the use of a vacuum to force a piston in a cylinder to hold a brake shoe off a drum; when the vacuum is destroyed, the shoe is released and presses on the drum. In an automotive power brake system, extra pressure can be exerted on the hydraulic master cylinder piston by a vacuum brake's piston.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Technology: Terms and Concepts