brown dwarf

brown dwarf, in astronomy, celestial body that is larger than a planet but does not have sufficient mass to convert hydrogen into helium via nuclear fusion as stars do. Also called "failed stars," brown dwarfs form in the same way as true stars (by the contraction of a swirling cloud of interstellar matter). True stars have enough mass (greater than 0.084 times that of the sun) to compress their core until the increasing temperature and pressure ignite the hydrogen fusion reaction, but brown dwarfs have only a relatively short period of deuterium (heavy hydrogen) burning before they cool and fade. Their coolness gives brown dwarfs two distinguishing characteristics: One is that most of the radiation they emit is in the infrared part of the spectrum; the other is that brown dwarfs can be distinguished by traces of lithium in their spectrum because, unlike true stars, brown dwarfs never get hot enough to burn the lithium that was in the interstellar cloud as it condensed.

Although they should exist in large numbers, brown dwarfs are difficult to find using conventional astronomical techniques because they are dim compared with true stars. A number of brown dwarfs have been identified, the first in the Pleiades star cluster in 1995. The first X-ray-emitting brown dwarf was detected in Chamaeleon dark cloud number I in 1998. A year later, several so-called methane dwarfs were discovered; these are thought to be older brown dwarfs that have cooled sufficiently over billions of years so that large amounts of methane could form in their atmospheres. The closest brown dwarf to Earth, Epsilon Indi B, less than 12 light-years from the Sun, was discovered in 2003.

Brown dwarfs belong to the "T dwarf" category of objects straddling the domain between stars and giant planets. Because brown dwarfs are typically 10–80 times the mass of Jupiter, some of the large extrasolar bodies discovered orbiting stars may be brown dwarfs rather than giant Jupiterlike planets. Observations of 100 young brown dwarfs in the Orion Nebula in 2001 strongly supported the theory that they originate as failed stars; many of the brown dwarfs were surrounded by disks of dust and gas that conceivably could condense and conglomerate to create planets orbiting them. Brown dwarfs are believed to play an important role in the process of stellar evolution. They are a component of the dark matter that along with dark energy may account for more than 90% of the mass of the universe.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on brown dwarf from Fact Monster:

See more Encyclopedia articles on: Astronomy: General