differential geometry

The Analysis of Surfaces

In the analysis of surfaces, points on a surface may be described not only with respect to the three-dimensional coordinates of the space in which the surface is considered but also with respect to an intrinsic coordinate system defined in terms of a system of curves on the surface itself. The curves on the surface that locally represent the shortest distances between points on the surface are called geodesics; geodesics on a plane are straight lines. Tangent and normal vectors are also defined for a surface, but the relationships between them are more complex than for a space curve (e.g., a surface has a whole circle of unit vectors tangent to it at a given point).

The results of the theory of surfaces are expressed most easily in the notation of tensors. It is found that the total, or Gaussian, curvature of a surface is a bending invariant, i.e., an intrinsic property of the surface itself, independent of the space in which the surface may be considered. Of particular importance are surfaces of constant curvature; planes, cylinders, cones, and other so-called developable surfaces have zero curvature, while the elliptic and hyperbolic planes of non-Euclidean geometry are surfaces of constant positive and negative curvature, respectively.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on differential geometry The Analysis of Surfaces from Fact Monster:

See more Encyclopedia articles on: Mathematics