The Elements through the Ages

Some elements have been known since antiquity. Gold ornaments from the Neolithic period have been discovered. Gold, iron, copper, lead, silver, and tin were used in Egypt and Mesopotamia before 3000 B.C. However, recognition of these metals as chemical elements did not occur until modern times.

Greek Concept of the Elements

The Greek philosophers proposed that there are basic substances from which all things are made. Empedocles proposed four basic "roots," earth, air, fire, and water, and two forces, harmony and discord, joining and separating them. Plato called the roots stoicheia (elements). He thought that they assume geometric forms and are made up of some more basic but undefined matter. A different theory, that of Leucippus and his followers, held that all matter is made up of tiny indivisible particles ( atomos ).

This theory was rejected by Aristotle, who expanded on Plato's theory. Aristotle believed that different forms ( eidos ) were assumed by a basic material, which he called hulé. The hulé had four basic properties, hotness, coldness, dryness, and moistness. The four elements differ in their embodiment of these properties; fire is hot and dry, earth cold and dry, water cold and moist, and air hot and moist. Although Aristotle proposed that an element is "one of those simple bodies into which other bodies can be decomposed and which itself is not capable of being divided into others," he thought the metals to be made of water, and called mercury "silver water" ( chutos arguros ). His idea that matter was a single basic substance that assumed different forms led to attempts by the alchemists to transmute other metals into gold.

Evolution of Modern Concepts

Although much early work was done in chemistry, especially with metals, and many recipes were recorded, there were few developments in the conception of the elements. In the 16th cent. Paracelsus proposed salt, mercury, and sulfur as three "principles" of which bodies were made, although he apparently also believed in the four "elements." Van Helmont (c.1600) rejected the four elements and three principles, substituting two elements, air and water.

Robert Boyle rejected these early theories and proposed a definition of chemical elements that led to the currently accepted definition. His definition is strikingly similar to Aristotle's earlier definition. In The Sceptical Chymist (1661) Boyle wrote, "I now mean by elements … certain primitive and simple, or perfectly unmingled bodies; which not being made of any other bodies, or of one another, are the ingredients of which all those called perfectly mixed bodies [chemical compounds] are immediately compounded, and into which they are ultimately resolved."

Whereas Aristotle and other early philosophers tried to determine the identity of the elements solely by reason, Boyle and later scientists used the results of numerous experiments to identify the elements. In 1789 Antoine Lavoisier published a list of chemical elements based on Boyle's definition; this encouraged adoption of standard names for the elements. Although some of his elements are now known to be compounds, such as metallic oxides and salts, they were at the time accepted as elements since they could not be decomposed by any method then known.

In 1803 John Dalton proposed (as part of his atomic theory) that all atoms of an element have identical properties (including mass), that these atoms are unchanged by chemical action, and that atoms of different elements react with one another in simple proportions. Although symbols for some of the elements already existed, they were by no means universally accepted, and each compound also had a unique symbol that was unrelated to its chemical composition. Dalton devised a new set of circular symbols for the elements and used a combination of elemental symbols to represent a compound. For example, his symbol for oxygen was art/dalton-oxygen.gifa circle, and for hydrogen art/dalton-hydrogen.gifa circle with a dot in the center. Since he thought water contained one atom of hydrogen for every atom of oxygen, he formed the symbol for water by writing the symbols for hydrogen and oxygen touching one another, ⊙&nosp;○art/dalton-water.gif. J. J. Berzelius was the first to use the modern method, letting one or two letters of the element's name serve as its symbol. He also published an early table of atomic weights of 24 elements with most values very close to those now in use.

Discovery of the Elements

As noted above, some of the elements were discovered in prehistoric times but were not recognized as elements. Arsenic was discovered around 1250 by Albertus Magnus, and phosphorus was discovered about 1674 by Hennig Brand, an alchemist, who prepared it by distilling human urine. Only 12 elements were known before 1700, and only about twice that many by 1800, but by 1900 over 80 elements had been identified. In 1919 Ernest Rutherford found that hydrogen was given off when nitrogen was bombarded with alpha particles. This first transmutation encouraged further study of nuclear reactions, and eventually led to the discovery in 1937 of technetium, the first synthetic element. Neptunium (atomic number 93) was the first transuranium element to be synthesized (1940). Its discovery prompted the search that has led to the ongoing synthesis of additional transuranium elements.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Chemistry: General

Play Hangman

Play Poptropica

Play Quizzes

Play Tic Tac Toe