satellite, artificial: Types of Satellites

Types of Satellites

Satellites can be divided into five principal types: research, communications, weather, navigational, and applications.

Research satellites measure fundamental properties of outer space, e.g., magnetic fields, the flux of cosmic rays and micrometeorites, and properties of celestial objects that are difficult or impossible to observe from the earth. Early research satellites included a series of orbiting observatories designed to study radiation from the sun, light and radio emissions from distant stars, and the earth's atmosphere. Notable research satellites have included the Hubble Space Telescope, the Compton Gamma-Ray Observatory, the Chandra X-ray Observatory, the Infrared Space Observatory, and the Solar and Heliospheric Observatory (see observatory, orbiting). Also contributing to scientific research were the experiments conducted by the astronauts and cosmonauts aboard the space stations launched by the United States (Skylab) and the Soviet Union (Salyut and Mir); in these stations researchers worked for months at a time on scientific or technical projects. The International Space Station, whose first permanent crew boarded in 2000, continues this work.

Communications satellites provide a worldwide linkup of radio, telephone, and television. The first communications satellite was Echo 1; launched in 1960, it was a large metallized balloon that reflected radio signals striking it. This passive mode of operation quickly gave way to the active or repeater mode, in which complex electronic equipment aboard the satellite receives a signal from the earth, amplifies it, and transmits it to another point on the earth. Relay 1 and Telstar 1, both launched in 1962, were the first active communications satellites; Telstar 1 relayed the first live television broadcast across the Atlantic Ocean. However, satellites in the Relay and Telstar program were not in geosynchronous orbits, which is the secret to continuous communications networks. Syncom 3, launched in 1964, was the first stationary earth satellite. It was used to telecast the 1964 Olympic Games in Tokyo to the United States, the first television program to cross the Pacific Ocean. In principle, three geosynchronous satellites located symmetrically in the plane of the earth's equator can provide complete coverage of the earth's surface. In practice, many more are used in order to increase the system's message-handling capacity. The first commercial geosynchronous satellite, Intelsat 1 (better known as Early Bird), was launched by COMSAT in 1965. A network of 29 Intelsat satellites in geosynchronous orbit now provides instantaneous communications throughout the world. In addition, numerous communications satellites have been orbited by commercial organizations and individual nations for a variety of telecommunications tasks.

Weather satellites, or meteorological satellites, provide continuous, up-to-date information about large-scale atmospheric conditions such as cloud cover and temperature profiles. Tiros 1, the first such satellite, was launched in 1960; it transmitted infrared television pictures of the earth's cloud cover and was able to detect the development of hurricanes and to chart their paths. The Tiros series was followed by the Nimbus series, which carried six cameras for more detailed scanning, and the Itos series, which was able to transmit night photographs. Other weather satellites include the Geostationary Operational Environmental Satellites (GOES), which send weather data and pictures that cover a section of the United States; China, Japan, India, and the European Space Agency have orbited similar craft. Current weather satellites can transmit visible or infrared photos, focus on a narrow or wide area, and maneuver in space to obtain maximum coverage.

Navigation satellites were developed primarily to satisfy the need for a navigation system that nuclear submarines could use to update their inertial navigation system. This led the U.S. navy to establish the Transit program in 1958; the system was declared operational in 1962 after the launch of Transit 5A. Transit satellites provided a constant signal by which aircraft and ships could determine their positions with great accuracy. In 1967 civilians were able to enjoy the benefits of Transit technology. However, the Transit system had an inherent limitation. The combination of the small number of Transit satellites and their polar orbits meant there were some areas of the globe that were not continuously covered—as a result, the users had to wait until a satellite was properly positioned before they could obtain navigational information. The limitations of the Transit system spurred the next advance in satellite navigation: the availability of 24-hour worldwide positioning information. The Navigation Satellite for Time and Ranging/Global Positioning Satellite System (Navstar/GPS) consists of 24 satellites approximately 11,000 miles above the surface of the earth in six different orbital planes. The GPS has several advantages over the Transit system: It provides greater accuracy in a shorter time; users can obtain information 24 hours a day; and users are always in view of at least five satellites, which yields highly accurate location information (a direct readout of position accurate to within a few yards) including altitude. In addition, because of technological improvements, the GPS system has user equipment that is smaller and less complex. The Soviet Union (now Russia) established a Navstar equivalent system known as the Global Orbiting Navigation Satellite System (GLONASS). The Russian-operated GLONASS uses a similar number of satellites and orbits to those of Navstar. Many of the handheld GPS receivers can also use the GLONASS data if equipped with the proper processing software. Beidou is China's satellite-based navigation and global positioning system. It began operations is 2011 with 10 satellites, succeeding an experimental system that became operational in 2001, and is planned to utilize 35 satellites when completed in 2020. The European Union and European Space Agency's Galileo satellite navigation system began operation in 2016 with 18 satellites and will have 24 in all when fully operational in 2020.

Applications satellites are designed to test ways of improving satellite technology itself. Areas of concern include structure, instrumentation, controls, power supplies, and telemetry for future communications, meteorological, and navigation satellites.

Satellites also have been used for a number of military purposes, including infrared sensors that track missile launches; electronic sensors that eavesdrop on classified conversations; and optical and other sensors that aid military surveillance. Such reconnaissance satellites have subsequently proved to have civilian benefits, such as commercially available satellite photographs showing surface features and structures in great detail, and fire sensing in remote forested areas. The United States has launched a series of Landsat remote-imaging satellites to survey the earth's resources by means of special television cameras and radiometric scanners. The data from remote-imaging satellites has also been used in archaeological research. Russia and other nations have also launched such satellites; the French SPOT satellites provide higher-resolution photographs of the earth.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Astronomy: General