sulfuric acid

Production of Sulfuric Acid

There are two major processes (lead chamber and contact) for production of sulfuric acid, and it is available commercially in a number of grades and concentrations. The lead chamber process, the older of the two processes, is used to produce much of the acid used to make fertilizers; it produces a relatively dilute acid (62%–78% H2SO4). The contact process produces a purer, more concentrated acid but requires purer raw materials and the use of expensive catalysts. In both processes sulfur dioxide is oxidized and dissolved in water. The sulfur dioxide is obtained by burning sulfur, by burning pyrites (iron sulfides), by roasting nonferrous sulfide ores preparatory to smelting, or by burning hydrogen sulfide gas. Some sulfuric acid is also made from ferrous sulfate waste solutions from pickling iron and steel and from waste acid sludge from oil refineries.

Lean Chamber Process

In the lead chamber process hot sulfur dioxide gas enters the bottom of a reactor called a Glover tower where it is washed with nitrous vitriol (sulfuric acid with nitric oxide, NO, and nitrogen dioxide, NO2, dissolved in it) and mixed with nitric oxide and nitrogen dioxide gases; some of the sulfur dioxide is oxidized to sulfur trioxide and dissolved in the acid wash to form tower acid or Glover acid (about 78% H2SO4). From the Glover tower a mixture of gases (including sulfur dioxide and trioxide, nitrogen oxides, nitrogen, oxygen, and steam) is transferred to a lead-lined chamber where it is reacted with more water. The chamber may be a large, boxlike room or an enclosure in the form of a truncated cone. Sulfuric acid is formed by a complex series of reactions; it condenses on the walls and collects on the floor of the chamber. There may be from three to twelve chambers in a series; the gases pass through each in succession. The acid produced in the chambers, often called chamber acid or fertilizer acid, contains 62% to 68% H2SO4. After the gases have passed through the chambers they are passed into a reactor called the Gay-Lussac tower where they are washed with cooled concentrated acid (from the Glover tower); the nitrogen oxides and unreacted sulfur dioxide dissolve in the acid to form the nitrous vitriol used in the Glover tower. Remaining waste gases are usually discharged into the atmosphere.

Contact Process

In the contact process, purified sulfur dioxide and air are mixed, heated to about 450°C, and passed over a catalyst; the sulfur dioxide is oxidized to sulfur trioxide. The catalyst is usually platinum on a silica or asbestos carrier or vanadium pentoxide on a silica carrier. The sulfur trioxide is cooled and passed through two towers. In the first tower it is washed with oleum (fuming sulfuric acid, 100% sulfuric acid with sulfur trioxide dissolved in it). In the second tower it is washed with 97% sulfuric acid; 98% sulfuric acid is usually produced in this tower. Waste gases are usually discharged into the atmosphere. Acid of any desired concentration may be produced by mixing or diluting the products of this process.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Compounds and Elements


Play Hangman

Play Poptropica

Play Same Game

Try Our Math Flashcards