Evolution of the Scanning Process

The idea of "seeing by telegraph" engrossed many inventors after the discovery in 1873 of variation in the electrical conductivity of selenium when exposed to light. Selenium cells were used in early television devices; the results were unsatisfactory, however, chiefly because the response of selenium to light-intensity variations was not rapid enough. Moreover, until the development of the electron tube there was no way of sufficiently amplifying the weak output signals. These limitations precluded the success of a television method for which Paul Nipkow in Germany received (1884) a patent.

His system employed a selenium photocell and a scanning disk; it embodied the essential features of later successful devices. A scanning disk has a single row of holes arranged so that they spiral inward toward the center from a point near the edge. The disk revolves in front of a light-sensitive plate on which a lens forms an image; each hole passes across, or "scans," a narrow, ring-shaped sector of the image. Thus the holes trace contiguous concentric sectors, so that in one revolution of the disk the entire image is scanned. When the light-sensitive cell is connected in an electric circuit, the variations in light cause corresponding fluctuations in the electric current. The image can be reproduced by a receiver whose luminous area is scanned by a similar disk synchronized with the disk of the transmitter.

Although selenium cells proved inadequate, the development of the phototube (see photoelectric cell) made the mechanical disk-scanning method practicable. In 1926, J. L. Baird in England and C. F. Jenkins in the United States successfully demonstrated television systems using mechanical scanning disks. While research remained at producing pictures made up of 60 to 100 scanned lines, mechanical systems were competitive. These were soon superseded, however, by electronic scanning methods; a television system employing electronic scanning was patented by V. K. Zworykin in 1928. The 1930s saw the laboratory perfection of television equipment that began to reach the market in 1945 after World War II.

The modern scanning process, which is the essence of television accomplishment, operates as do the eyes in reading a page of printed matter, i.e., line by line. A complex circuit of horizontal and vertical deflection coils controls this movement and causes the electronic beam to scan the back of a mosaic of photoelectric cells in a 525-line zigzag 30 times each second. (The 525-line 30-frame-per-second system is used in the United States, Japan, and elsewhere; many other countries use similar but incompatible systems.) Because of persistence of vision only about 30 pictures need be transmitted each second to give the effect of motion. The development of interlaced scanning results in alternate lines being scanned each 1/60 sec, the remaining lines being covered in the next 1/60 sec.

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

More on television Evolution of the Scanning Process from Fact Monster:

See more Encyclopedia articles on: Electrical Engineering

Play Hangman

Play Poptropica

Play Quizzes

Play Tic Tac Toe