wave

Oceanographic Waves

In a body of water, waves consist of a series of crests and troughs, where wavelength is the distance between two successive crests (or successive troughs). As waves are generated, the water particles are set in motion, following vertical circular orbits. Water particles momentarily move forward as the wave crest passes and backward as the trough passes. Thus, except for a slight forward drag, the water particles remain in essentially the same place as successive waves pass. The orbital motion of the water particles decreases in size at depths below the surface, so that at a depth equal to about one half of the wave's length, the water particles are barely oscillating back and forth. Thus, for even the largest waves, their effect is negligible below a depth of 980 ft (300 m).

The height and period of water waves in the deep ocean are determined by wind velocity, the duration of the wind, and the fetch (the distance the wind has blown across the water). In stormy areas, the waves are not uniform but form a confusing pattern of many waves of different periods and heights. Storms also produce white caps at wind speeds c.8 mi per hr (13 km per hr). Major storm waves can be over a half mile long and travel close to c.25 mi per hr (40 km per hour). A wave in the Gulf of Mexico associated with Hurricane Ivan (2004) measured 91 ft (27.7 m) high, and scientists believe that other waves produced by Ivan may have reached as much as 132 ft (40 m) high. Waves of similar heights, sometimes called rogue waves, most commonly occur in regions of strong ocean currents, which can amplify wind-driven waves when they flow in opposing directions; sandbanks may also act to focus wave energy and give rise to rogue waves.

When waves approach a shore, the orbital motion of the water particles becomes influenced by the bottom of the body of water and the wavelength decreases as the wave slows. As the water becomes shallower the wave steepens further until it "breaks" in a breaker, or surf, carrying the water forward and onto the beach in a turbulent fashion. Because waves usually approach the shore at an angle, a longshore (littoral) current is generated parallel to the shoreline. These currents can be effective in eroding and transporting sediment along the shore (see coast protection; beach).

In many enclosed or partly enclosed bodies of water such as lakes or bays, a wave form called a standing wave, or seiche, commonly develops as a result of storms or rapid changes in air pressure. These waves do not move forward, but the water surface moves up and down at antinodal points, while it remains stationary at nodal points.

Internal waves can form within waters that are density stratified and are similar to wind-driven waves. They usually cannot be seen on the surface, although oil slicks, plankton, and sediment tend to collect on the surface above troughs of internal waves. Any condition that causes waters of different density to come into contact with one another can lead to internal waves. They tend to have lower velocities but greater heights than surface waves. Very little is known about internal waves, which may move sediment on deeper parts of continental shelves.

Just as a rock dropped into water produces waves, sudden displacements such as landslides and earthquakes can produce high energy waves of short duration that can devastate coastal regions (see tsunami). Hurricanes traveling over shallow coastal waters can generate storm surges that in turn can cause devastating coastal flooding (see under storm).

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2012, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Geology and Oceanography