photosynthesis: The Photosynthetic Process

The Photosynthetic Process

The initial process in photosynthesis is the decomposition of water (H2O) into oxygen, which is released, and hydrogen; direct light is required for this process. The hydrogen and the carbon and oxygen of carbon dioxide (CO2) are then converted into a series of increasingly complex compounds that result finally in a stable organic compound, glucose (C6H12O6), and water. This phase of photosynthesis utilizes stored energy and therefore can proceed in the dark. The simplified equation used to represent this overall process is 6CO2+12H2O+energy=C6H12O6+6O2+6H2O. In general, the results of this process are the reverse of those in respiration, in which carbohydrates are oxidized to release energy, with the production of carbon dioxide and water.

The intermediary reactions before glucose is formed involve several enzymes, which react with the coenzyme ATP (see adenosine triphosphate) to produce various molecules. Studies using radioactive carbon have indicated that among the intermediate products are three-carbon molecules from which acids and amino acids, as well as glucose, are derived. This suggests that fats and proteins are also products of photosynthesis. The main product, glucose, is the fundamental building block of carbohydrates (e.g., sugars, starches, and cellulose). The water-soluble sugars (e.g., sucrose and maltose) are used for immediate energy. The insoluble starches are stored as tiny granules in various parts of the plant—chiefly the leaves, roots (including tubers), and fruits—and can be broken down again when energy is needed. Cellulose is used to build the rigid cell walls that are the principal supporting structure of plants.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Botany: General