Characteristics of Metamorphism

In general, a metamorphic rock is coarser and has a higher density and lower porosity than the rock from which it was formed. Under low grade metamorphic conditions, the original rocks may only compact, as in the formation of slate from shale. High grade metamorphism changes the rock so completely that the source rock often cannot be readily identified.

Alteration of rock texture by metamorphism commonly results in a rearrangement of mineral particles into a parallel alignment, called foliation, as a result of directed stress. Foliation, called banding or layering, is probably the single most characteristic property of metamorphic rocks. For example, slate is a metamorphic rock in which there has been little recrystallization of fine-grained sedimentary shale, but mineral realignment gives the rock a tendency to break along smooth planes termed slaty cleavage. Further higher-grade metamorphic conditions lead to a foliation called schistosity, resulting in schists, formed when tabular minerals, such as hornblende, graphite, mica, or talc are aligned and tightly packed in a parallel fashion. High grade metamorphism can segregate minerals, thereby forming bands. This foliation is called gneissic layering and forms gneiss from such rock as granite. Foliation does not always occur during metamorphism.

Chemical changes occurring during metamorphism also can rearrange the chemical constituents into assemblages stable in their new environment, thus often forming new minerals of essentially the same chemical composition as those occurring in the rock prior to metamorphism. For example, hornblende can be changed into garnet or pyroxene. The mineral composition of rocks may also be altered by the addition of new elements or by the removal of elements formerly present through the action of circulating liquids or gases or by recrystallization under pressure.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2023, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Geology and Oceanography