element
Introduction
Sections in this article:
Discovery of the Elements
As noted above, some of the elements were discovered in prehistoric times but were not recognized as elements. Arsenic was discovered around 1250 by Albertus Magnus, and phosphorus was discovered about 1674 by Hennig Brand, an alchemist, who prepared it by distilling human urine. Only 12 elements were known before 1700, and only about twice that many by 1800, but by 1900 over 80 elements had been identified. In 1919 Ernest Rutherford found that hydrogen was given off when nitrogen was bombarded with alpha particles. This first transmutation encouraged further study of nuclear reactions, and eventually led to the discovery in 1937 of technetium, the first synthetic element. Neptunium (atomic number 93) was the first transuranium element to be synthesized (1940). Its discovery prompted the search that has led to the ongoing synthesis of additional transuranium elements.
Evolution of Modern Concepts
Although much early work was done in chemistry, especially with metals, and many recipes were recorded, there were few developments in the conception of the elements. In the 16th cent. Paracelsus proposed salt, mercury, and sulfur as three “principles” of which bodies were made, although he apparently also believed in the four “elements.” Van Helmont (c.1600) rejected the four elements and three principles, substituting two elements, air and water.
Robert Boyle rejected these early theories and proposed a definition of chemical elements that led to the currently accepted definition. His definition is strikingly similar to Aristotle's earlier definition. In
Whereas Aristotle and other early philosophers tried to determine the identity of the elements solely by reason, Boyle and later scientists used the results of numerous experiments to identify the elements. In 1789 Antoine Lavoisier published a list of chemical elements based on Boyle's definition; this encouraged adoption of standard names for the elements. Although some of his elements are now known to be compounds, such as metallic oxides and salts, they were at the time accepted as elements since they could not be decomposed by any method then known.
In 1803 John Dalton proposed (as part of his atomic theory) that all atoms of an element have identical properties (including mass), that these atoms are unchanged by chemical action, and that atoms of different elements react with one another in simple proportions. Although symbols for some of the elements already existed, they were by no means universally accepted, and each compound also had a unique symbol that was unrelated to its chemical composition. Dalton devised a new set of circular symbols for the elements and used a combination of elemental symbols to represent a compound. For example, his symbol for oxygen was
Greek Concept of the Elements
The Greek philosophers proposed that there are basic substances from which all things are made. Empedocles proposed four basic “roots,” earth, air, fire, and water, and two forces, harmony and discord, joining and separating them. Plato called the roots
This theory was rejected by Aristotle, who expanded on Plato's theory. Aristotle believed that different forms (
The Elements through the Ages
Some elements have been known since antiquity. Gold ornaments from the Neolithic period have been discovered. Gold, iron, copper, lead, silver, and tin were used in Egypt and Mesopotamia before 3000
Official Symbols and Names for the Elements
Each element is assigned an official symbol by the International Union of Pure and Applied Chemistry (IUPAC). For example, the symbol for carbon is C, and the symbol for silver is Ag [Lat.
Many isotopes were given special names and symbols when they were first discovered in natural radioactive decay series (e.g., uranium-235 was called actinouranium and represented by the symbol AcU). This practice is discouraged in the modern nomenclature except in the case of hydrogen. The isotopes hydrogen-2 and hydrogen-3 are usually called deuterium and tritium, respectively. Hydrogen-1, the most abundant isotope, has the name protium but is usually simply called hydrogen. Newly discovered elements that have been synthesized by one laboratory and not yet confirmed by a second are given a provisional name based on Greek and Latin roots; when the discovery is confirmed, the laboratory that first made it may suggest a name for the element.
Properties of the Elements
Properties of an element are sometimes classed as either chemical or physical. Chemical properties are usually observed in the course of a chemical reaction, while physical properties are observed by examining a sample of the pure element. The chemical properties of an element are due to the distribution of electrons around the atom's nucleus, particularly the outer, or valence, electrons; it is these electrons that are involved in chemical reactions. A chemical reaction does not affect the atomic nucleus; the atomic number therefore remains unchanged in a chemical reaction.
Some properties of an element can be observed only in a collection of atoms or molecules of the element. These properties include color, density, melting point, boiling point, and thermal and electrical conductivity. While some of these properties are due chiefly to the electronic structure of the element, others are more closely related to properties of the nucleus, e.g., mass number.
The elements are sometimes grouped according to their properties. One major classification of the elements is as metals, nonmetals, and metalloids. Elements with very similar chemical properties are often referred to as families; some families of elements include the halogens, the inert gases, and the alkali metals. In the periodic table the elements are arranged in order of increasing atomic weight in such a way that the elements in any column have similar properties.
Atomic Mass and Atomic Weight
Atoms are not very massive; a carbon atom weighs about 2 × 10−23 grams. Because atoms have so little mass, a unit much smaller than the gram is used. In the current system (adopted in 1960–61) the unit of atomic mass, called atomic mass unit (amu), is defined as exactly
Isotopes
Although all atoms of an element have the same number of protons in their nuclei, they may not all have the same number of neutrons. Atoms of an element with the same mass number make up an isotope of the element. All known elements have isotopes; some have more than others. Hydrogen, for example, has only 3 isotopes, while xenon has 16. Approximately 300 naturally occurring isotopes are known, and more than 2,500 radioactive isotopes have been artificially produced (see synthetic elements). There are 13 isotopes of carbon, having from 2 to 14 neutrons in the nucleus and therefore mass numbers from 8 to 20.
Not all of the elements have stable isotopes. Some have only radioactive isotopes, which decay to form other isotopes, usually of other elements (see radioactivity). In some cases all the isotopes of an element are very unstable, and the element is therefore not found in nature. Only 94 of the elements are known to occur naturally on earth. Of these, 6 occur in minute amounts produced by the decay of other elements. These 6 extremely scarce elements and those that do not occur at all naturally were discovered when they were produced in the laboratory; they are often called the artificially produced or
Atomic Number and Mass Number
Regardless of how many atoms the element is composed of, each atom has the same number of protons in its nucleus, and this is different from the number in the nucleus of any other element. Thus this number, called the atomic number (at. no.), defines the element. For example, the element carbon consists of atoms all with at. no. 6, i.e., all having 6 protons in the nucleus; any atom with at. no. 6 is a carbon atom. By 2016, 118 elements were known, ranging from hydrogen with an at. no. of 1 to oganesson with an at. no. of 118.
The Atom
The smallest unit of a chemical element that has the properties of that element is called an atom. Many elements (e.g., helium) occur as single atoms. Other elements occur as molecules made up of more than one atom. Elements that ordinarily occur as diatomic molecules include hydrogen, nitrogen, oxygen, and the halogens, but oxygen also occurs as a triatomic form called ozone. Phosphorus usually occurs as a tetratomic molecule, and crystalline sulfur occurs as molecules containing eight atoms.
Bibliography
See J. Emsley,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Chemistry: General
