# number theory

_{1} · _{2} · _{3} · · · _{n}) of primes that are unique except for the order in which they are listed; e.g., the number 20 is the product 20 = 2 · 2 ·5, and it is unique (disregarding order) since 20 has this and only this product of primes. This theorem was known to the Greek mathematician Euclid, who proved that there are infinitely many primes. Analytic number theory has given a further refinement of Euclid's theorem by determining a function that measures how densely the primes are distributed among all integers. Twin primes are primes having a difference of 2, such as (3,5) and (11,13). The modern theory of numbers made its first great advances through the work of Leonhard Euler, C. F. Gauss, and Pierre de Fermat. It remains a major area of mathematical research, to which the most sophisticated mathematical tools have been applied.

See O. Ore,

*The Columbia Electronic Encyclopedia,* 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

**See more Encyclopedia articles on: **Mathematics