physics: Particles, Energy, and Contemporary Physics

Particles, Energy, and Contemporary Physics

Dirac's theory, which combined quantum mechanics with the theory of relativity, also predicted the existence of antiparticles. During the 1930s the first antiparticles were discovered, as well as other particles. Among those contributing to this new area of physics were James Chadwick, C. D. Anderson, E. O. Lawrence, J. D. Cockcroft, E. T. S. Walton, Enrico Fermi, and Hideki Yukawa.

The discovery of nuclear fission by Otto Hahn and Fritz Strassmann (1938) and its explanation by Lise Meitner and Otto Frisch provided a means for the large-scale conversion of mass into energy, in accordance with the theory of relativity, and triggered as well the massive governmental involvement in physics that is one of the fundamental facts of contemporary science. The growth of physics since the 1930s has been so great that it is impossible in a survey article to name even its most important individual contributors.

Among the areas where fundamental discoveries have been made more recently are solid-state physics, plasma physics, and cryogenics, or low-temperature physics. Out of solid-state physics, for example, have come many of the developments in electronics (e.g., the transistor and microcircuitry) that have revolutionized much of modern technology. Another development is the maser and laser (in principle the same device), with applications ranging from communication and controlled nuclear fusion experiments to atomic clocks and other measurement standards.

Sections in this article:

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2024, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Physics