comet
Introduction
Comet: Whatever the direction of a comet's flight, its “tail” always points away from the sun. The tail disappears when the comet is far from the sun.
Sections in this article:
The Kuiper Belt
In 1951, G. P. Kuiper, noting that Oort's cloud of comets did not adequately account for the population of short-period comets (those making complete orbits around the sun in less than 200 years), proposed the existence of a disk-shaped region of minor planets outside the orbit of Neptune, now called the Kuiper belt, as a source for such comets. The Kuiper belt acts as a reservoir for these in the same way that the Oort cloud acts as a reservoir for the long-period comets. This theory was validated in 1992 with the discovery of the first of more than 70,000 so-called transneptunian objects, bodies more than 60 mi (100 km) in diameter in an orbit 30–50 AU from the sun. Astronomers subsequently came to regard Pluto not as a planet but rather as dwarf planet that is a member of the Kuiper belt. The discoveries of several Kuiper belt objects led to this view. Eris, an object discovered in 2003 (and originally nicknamed Xena), has an elongated orbit that extends to roughly three times the distance of Pluto's, has a diameter (1,500 mi/2,400 km) slightly larger than that of Pluto, and has a moon; Quaoar is more than half the size of Pluto; and Ixion and Varuna are almost half the size of Pluto. 2003 VS2 (roughly a fourth the size of Pluto) and a number of other Kuiper belt objects, called plutinos, have an orbital synchrony with Neptune like that of Pluto (Neptune completes three orbits around the sun in the same time that Pluto and the plutinos complete two orbits).
The Oort Cloud
The origin of the solar system's comets is still uncertain. They were once thought to have originated outside the solar system, but more recent theories suggest they were formed during the formation of the solar system and are permanent members of it. According to the storage-cloud hypothesis proposed by J. H. Oort and since modified, a spherical shell of more than 100 billion comets surrounds the solar system at a distance of 20,000 AU to 50,000 AU or greater (1 AU, or astronomical unit, being the mean distance from the earth to the sun); some astronomers have suggested an inner Oort cloud exists beginning at 2,000 to 5,000 AU and extending to 20,000 AU. While the comets move very slowly in this huge storage cloud, a passing star may change the orbits of bodies in the outer reaches of the Oort cloud enough to force some of them into the inner part of the solar system. The mechanism for the Oort cloud's creation, however, is unclear; it has been suggested that the Oort cloud may include a significant amount of material that originated outside the solar system and was gravitationally captured by the sun.
Structure of Comets
A comet far from the sun consists of a dense solid body or conglomerate of bodies a few miles in diameter called the nucleus. As it approaches the sun the nucleus becomes enveloped by a luminous “cloud” of dust and gases called the coma; this luminosity is caused by the molecules absorbing and reflecting the radiation of the sun. According to the icy-conglomerate theory proposed by F. L. Whipple in 1949, the nucleus consists of frozen water and gases with particles of heavier substances interspersed throughout, thus being in effect a large, dirty snowball, although more recent research has suggested that comets may contain a higher proportion of dust and rock than previously proposed. The
Near the sun a comet can change drastically in size and shape; it may even split into two or more pieces, as Comet Biela did in 1846 and Comet West did in 1976, or disintegrate after repeated trips around the sun. The comas of comets vary widely in size, some being the size of the earth or larger. However, the nucleus, which makes up virtually all a comet's mass, is small; in 1986 the
In 1992 the periodic comet Shoemaker Levy 9 made an extremely close passage of Jupiter. The tidal stresses induced by the giant planet's gravity shattered the comet's nucleus, estimated to have been 5–9 km (3–5 mi) in diameter, into more than 20 major fragments, the largest of which was about 4 km (2.5 mi) in diameter. Two years later, the returning fragmented comet crashed into Jupiter; observations from both terrestrial observatories and artificial satellites such as the Hubble Space Telescope yielded vast amounts of information about the structure of comets and about Jupiter's atmosphere.
In 1996 the
The Orbits of Comets
Although the occurrence of many comets had been recorded, it was not until 1577 that the Danish astronomer Tycho Brahe suggested that they traveled in elongated rather than circular orbits. A century later Giovanni Borelli concluded that the orbits were parabolic and that comets passed through the solar system but once, never to return. In 1705, however, Edmond Halley concluded that the comet observed in 1682 was the same one that had been described in 1531 and 1607, and he predicted that it would return again in late 1758 or early 1759. The comet was sighted on Christmas Day in 1758, and it returned again in 1835, 1910, and 1986 (see Halley's comet). While some comets appear to have parabolic orbits (see parabola), others return to the inner solar system in highly elongated orbits with periods ranging from a hundred to thousands of years. Still others return at shorter intervals of less than 10 years and reach aphelion (the orbital point farthest from the sun) near the planet Jupiter; these have been captured into their smaller orbits by Jupiter's gravitational attraction.
Bibliography
See D. Yeomans,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Astronomy: General
