brake, in technology
Introduction
Shoe brake Disk brake
Sections in this article:
The Vacuum Brake System
The vacuum brake system, or vacuum brake, depends upon the use of a vacuum to force a piston in a cylinder to hold a brake shoe off a drum; when the vacuum is destroyed, the shoe is released and presses on the drum. In an automotive power brake system, extra pressure can be exerted on the hydraulic master cylinder piston by a vacuum brake's piston.
The Hydraulic Brake System
The hydraulic brake system, or hydraulic brake, is used on almost all automobiles (see hydraulic machine). When the brake pedal of an automobile is depressed, a force is applied to a piston in a master cylinder. The piston forces hydraulic fluid through metal tubing into a cylinder in each wheel where the fluid's pressure moves two pistons that press the brake shoes against the drum.
The Air Brake System
An early system for multiplying the braking force, called the air brake system, or air brake, was invented by American manufacturer George Westinghouse and was first used on passenger trains in 1868. It is now widely used on railroad trains. The fundamental principle involved is the use of compressed air acting through a piston in a cylinder to set block brakes on the wheels. The action is simultaneous on the wheels of all the cars in the train. The compressed air is carried through a strong hose from car to car with couplings between cars; its release to all the separate block brake units, at the same time, is controlled by the engineer. An automatic feature provides for the setting of all the block brakes in the event of damage to the brake hose, leakage, or damage to individual brake units. Railroad braking can be enhanced by collision avoidance systems that will stop train movement without human intervention in certain situations, such as when there is a danger of collision. In the United States, positive train control, a system that uses GPS devices, radio, and computers to automate emergency braking, was fully installed on some 58,000 mi (93,000 km) of track in 2020; it was first mandated by Congress in 2008. The air brake is used also on subway trains, trolley cars, buses, and trucks.
Braking Systems
A manually operated brake pedal or handle is used to activate a brake. With low-power machinery or vehicles the operator can usually apply sufficient force through a simple mechanical linkage from the pedal or handle to the stationary part of the brake. In many cases, however, this force must be multiplied by using an elaborate braking system. In many modern braking systems there no longer is a direct connection between the pedal and the brake; a sensor is used register the force applied to the pedal, and that information is used to determine the pressure to apply to the brake. Automobile braking systems may also include an override that disables the accelerator when the brake is activated. An antilock braking system (ABS) uses sensors to identify when a wheel is locking and then applies and releases the brake automatically several times per second to prevent lockup. ABS can prevent skids, permitting controlled stops, and decreases the amount of time and distance needed to stop a car.
Electric Brakes
A machine that is driven by an electric motor can sometimes use its motor as a brake. Because inertia keeps the machine's shafts moving after the current to the electric motor has been shut off, the machine keeps the motor's armature turning. While this is happening, if the motor's action can be changed to that of a generator, the electric current produced will be drawing its energy from the machine, thus slowing it. However, since such a braking method is not suitable for bringing the machine to a quick stop, it is usually supplemented by friction brakes.
Friction Brakes
Friction brakes, the most common kind, operate on the principle that friction can be used to convert the mechanical energy of a moving object into heat energy, which is absorbed by the brake. The essential components of a friction brake are a rotating part, such as a wheel, axle, disk, or brake drum, and a stationary part that is pressed against the rotating part to slow or stop it. The stationary part usually has a lining, called a brake lining, that can generate a great amount of friction yet give long wear; it formerly contained asbestos, but this is being replaced by less efficient materials for environmental reasons.
The principal types of friction brake are the block brake, the band brake, the internal-shoe brake, and the disk brake. The block brake consists of a block, the stationary part, that is shaped to fit the contour of a wheel or drum. For example, a wooden block applied to the rim of a wheel has long been used to slow or stop horse-drawn vehicles. A simple band brake consists of a metal band, the stationary part, that can be tightened around a drum by means of a lever. It is found on hoists and excavating machinery. The internal-shoe brake has a drum that contains two stationary semicircular pieces, or shoes, which slow or stop the motion of the drum by pressing against its inner surface. This is the type of brake most often found on automobiles, with an internal-shoe brake drum located on the central part of each wheel. A disk brake of the type used on automobiles has a metal disk and pistons with friction pads that can close on the disk and slow it.
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Technology: Terms and Concepts
