Jupiter, in astronomy

Introduction

Jupiter jo͞oˈpətər [key], in astronomy, 5th planet from the sun and largest planet of the solar system.

Sections in this article:

Its Moons and Rings

Astronomers have discovered 79 satellites orbiting Jupiter, but five of those, small satellites that were identified in 2003 and 2011 but have not been found since then, are considered lost. Jupiter's satellites are divided into six main groups (in order of increasing distance from the planet): Amalthea, Galilean, Himalia, Ananke, Carme, and Pasiphae. The first group is comprised of the four innermost satellites—Metis, Adrastea, Amalthea, and Thebe. The red color of Amalthea (diameter: 117 mi/189 km), a small, elongated satellite discovered (1892) by Edward Barnard, probably results from a coating of sulfur particles ejected from Io. Metis (diameter: 25 mi/40 km), Adrastea (diameter: 12 mi/20 km), and Thebe (diameter: 62 mi/100 km) are all oddly shaped and were discovered in 1979 in photographs returned to earth by the Voyager 1 space probe. Metis and Adrastea orbit close to Jupiter's thin ring system; material ejected from these moons helps maintain the rings.

The four largest satellites—Io, Europa, Ganymede, and Callisto—were discovered by Galileo in 1610, shortly after he invented the telescope, and are known as the Galilean satellite group. Io (diameter: 2,255 mi/3,630 km), the closest to Jupiter of the four, is the most active geologically, with 30 active volcanoes that are probably energized by the tidal effects of Jupiter's enormous mass. Europa (diameter: 1,960 mi/3,130 km) is a white, highly reflecting body whose smooth surface is covered with dark streaks up to 43 mi/70 km in width and from several hundred to several thousand miles in length. Ganymede (diameter: 3,268 mi/5,262 km), second most distant of the four and the largest satellite in the solar system, has heavily cratered regions, tens of miles across, that are surrounded by younger, grooved terrain. Callisto (diameter: 3,000 mi/4,806 km), the most distant and the least active geologically of the four, has a heavily cratered surface.

The eight inner satellites are regular, that is, their orbits are relatively circular, near equatorial, and prograde, i.e., moving in the same direction as the planet's rotation. The remainder are irregular in that their orbits are large, elliptical, inclined to that of the planet, and, in the case of nearly all the moons beyond Carpo, retrograde. (Jupiter's retrograde satellites are distinguished from the regular by the spelling of their names, which all end in the letter “e”.) In addition, most of the outer moons are much smaller.

Themisto (diameter: 5 mi/8 km) orbits Jupiter midway between the Galilean and next main group of satellites, the Himalias. The Himalia group consists of seven tightly clustered satellites with orbits outside that of Callisto—Leda (diameter: 6 mi/10 km), Himalia (diameter: 106 mi/170 km), Ersa (diameter 2 mi/3 km), Pandia (diameter 1 mi/2 km), Lysithea (diameter: 15 mi/24 km), Elara (diameter: 50 mi/80 km), and Dia (diameter: 2.5 mi/4 km). These eight satellites have prograde orbits. Situated between the Himalia and Ananke groups are Carpo (diameter: 2 mi/3 km) and S/2016 J2 (diameter: .6 mi/1 km), which like Themisto do not seem to belong to any of the main groups. Carpo has the most highly inclined orbit of any of the prograde satellites; S/2016 J2, the outermost prograde satellite, has an orbit that intersects those of a number of retrograde satellites.

The Ananke group comprises 20 satellites, which share similar orbits and range from .6 to 3 mi (1–5 km) in diameter except for two: Euporie, Eupheme, Jupiter LV, Jupiter LII, Thelxinoe, Euanthe, Helike, Orthosie, S/2017 J7, Jupiter LIV, S/2017 J3, Iocaste, S/2003 J16, Praxidike (diameter: 4.5 mi/7 km), Harpalyke, Mneme, Hermippe, Thyone, S/2017 J9, and Ananke (diameter: 12.5 mi/20 km). Like the Ananke group, the Carme group is remarkably homogeneous. It comprises 20 satellites, which share similar orbits and, except for one, range from .6 to 3 mi (1–5 km) in diameter: Herse, Aitne, Kale, Taygete, S/2003 J19, Chaldene, Erinome, Kallichore, S/2017 J5, S/2017 J8, Kalyke, Carme (diameter: 28 mi/46 km), S/2017 J2, Pasithee, Jupiter LI, Eukelade, Arche, Isonoe, S/2003 J9, and Eirene.

The most distant of the groups from the planet is the Pasiphae, which comprises 16 widely dispersed satellites that, except for three, also range from .6 to 3 mi (1–5 km) in diameter: S/2017 J6, Philophrosyne, S/2003 J23, Aoede, Callirrhoe (diameter: 5.5 mi/9 km), Eurydome, Kore, Cyllene, Jupiter LVI, Jupiter LIX, Pasiphae (diameter: 36 mi/58 km), Hegemone, Sinope (diameter: 23 mi/38 km), Sponde, Autonoe, and Megaclite. The odd orbits of the irregular satellites indicate that they were captured after Jupiter's formation. Because they are small, irregularly shaped, and clustered into groups, it is believed that they originated as parts of a larger body that either shattered due to Jupiter's enormous gravity or broke apart in a collision with another body.

Jupiter has three ringsHalo, Main, and Gossamer—similar to those of Saturn but much smaller and fainter. An intense radiation belt lies between the rings and Jupiter's uppermost atmospheric layers.

Astronomical and Physical Characteristics

Jupiter's orbit lies beyond the asteroid belt at a mean distance of 483.6 million mi (778.3 million km) from the sun; its period of revolution is 11.86 years. In order from the sun it is the first of the giant outer planets—Jupiter, Saturn, Uranus, and Neptune—very large, massive planets of relatively low density, having rapid rotation and a thick, opaque atmosphere. Jupiter has a diameter of 88,815 mi (142,984 km), more than 11 times that of the earth. Its mass is 318 times that of the earth and about 21⁄2 times the mass of all other planets combined.

The atmosphere of Jupiter is composed mainly of hydrogen, helium, methane, and ammonia. However, the concentration of nitrogen, carbon, sulfur, argon, xenon, and krypton—as measured by an instrument package dropped by the space probe Galileo during its 1995 flyby of the planet—is more than twice what was expected, raising questions about the accepted theory of Jupiter's formation. The atmosphere appears to be divided into a number of light and dark bands parallel to its equator and shows a range of complex features, including a storm called the Great Red Spot. Located in the southern hemisphere and varying from c.15,600 to 25,000 mi (25,000 to 40,000 km) in one direction and 7,500 to 10,000 mi (12,000 to 16,000 km) in the other, the storm rotates counterclockwise and has been observed ever since 1664, when Robert Hooke first noted it. Also in the southern hemisphere is the Little Red Spot, c.8,000 mi (13,000 km) across. It formed from three white-colored storms that developed in the 1940s, merged in 1998–2000, and became clearly red by 2006. Analysis of the data obtained when massive pieces of the comet Shoemaker Levy 9 plunged into Jupiter in 1994 has extended our knowledge of the Jovian atmosphere, and the space probe Juno revealed a number of smaller storms, each roughly the size of the earth, clustered at the planet's poles.

Jupiter has no solid rock surface. One theory pictures a gradual transition from the outer ammonia clouds to a thick layer of frozen gases and finally to a liquid or solid hydrogen mantle. Beneath its has been suggested that Jupiter may have a core of rocky material with a mass 10–15 times that of the earth. The spot and other markings of the atmosphere also provide evidence for Jupiter's rapid rotation, which has a period of about 9 hr 55 min. This rotation causes a polar flattening of over 6%. The temperature ranges from about −190℉ (−124℃) for the visible surface of the atmosphere, to 9℉ (−13℃) at lower cloud levels; localized regions reach as high as 40℉ (4℃) at still lower cloud levels near the equator. Jupiter radiates about four times as much heat energy as it receives from the sun, suggesting an internal heat source. This energy is thought to be due in part to a slow contraction of the planet. Jupiter is also characterized by intense nonthermal radio emission; in the 15-m range it is the strongest radio source in the sky. Jupiter has a huge asymetrical magnetic field, extending past the orbit of Saturn in one direction but far less in the direction of the sun. This magnetosphere traps high levels of energetic particles far more intense than those found within earth's Van Allen radiation belts. Nine space probes have encountered the Jovian system: Pioneers 10 and 11 (1973 and 1974), Voyagers 1 and 2 (both 1979), Ulysses (1992, 2004), Galileo (1995–2003), Cassini (2000), New Horizons (2007), and Juno (2016–).

The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.

See more Encyclopedia articles on: Astronomy: General